
Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Tonnetz as a Planar Graph Representation for
Generating Harmonic Chord Progressions in Songs

Alya Nur Rahmah - 13524081
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: alyanrrhmah@gmail.com , 13524081@std.stei.itb.ac.id

Abstract— Harmonic structures in music can be analyzed and
shaped through systematic mathematical approaches, one of
which is graph representation. Tonnetz, a conceptual lattice
diagram representing tonal space that describes the relationship
between tones based on harmonic intervals such as perfect fifth
and major third, can be modeled as a planar graph to help the
process of automatic generation of chord progressions. In this
paper, Tonnetz is modeled as a graph, where each vertex
represents a major or minor chord, and edges connect pairs of
chords that have harmonic proximity. By applying graph theory
concepts from discrete mathematics, graph traversal simulations
are performed that generate a sequence of chord progressions
with high harmonic connectivity. Graph visualization shows that
the Tonnetz structure enables the construction of coherent
progression paths and can be used in digital music creation.
Experimental results show that this method can be used as a
logical approach to support automatic chord composition or
improvisation systems.

Keywords— Tonnetz, graph theory, planar graph, chord
progressions.

I. INTRODUCTION
Music is one of the forms of artistic expression that has

developed rapidly alongside advances in technology and
science. One of the fundamental aspects of music is harmony,
which refers to the orderly relationship between notes that
form chord progressions and give a composition its distinctive
character. Harmonious chord progressions are key to creating
the mood, emotion, and musical appeal of a song. Therefore,
the analysis and design of good chord progressions are
important considerations in music theory and the development
of digital music applications.

In recent decades, mathematical approaches have been
widely used to understand and develop musical structures.
One of the approach is the representation of note and chord
relationships in the form of graphs. Graph theory, as part of
discrete mathematics, offers a formal framework that can be
used to systematically model and analyze complex
relationships between musical elements. By representing notes
or chords as vertices and harmonic relationships as edges,
various patterns and progression paths can be explored.

One of the most famous graph models in music
theory is the Tonnetz, first introduced by Leonhard Euler in
the 18th century. The Tonnetz is a lattice diagram that depicts

the tonal space based on harmonic intervals such as the perfect
fifth and major third. In Tonnetz, notes or chords that are
harmonically close are geometrically close, making it easier to
analyze and create coherent chord progressions. In this model,
each vertex represents a major or minor chord, while edges
connect chords with harmonic proximity. By modeling
Tonnetz as a planar graph, the process of finding chord
progression paths can be done through graph traversal
algorithms, enabling the automatic generation of chord
progressions with high harmonic connectivity. . By using
graph traversal algorithms, chord progression paths can be
systematically generated while considering strong harmonic
relationships between chords. This approach provides a logical
and structured method to support the automatic composition of
chords.

The use of Tonnetz as a graph model for automatic chord
progression generation is highly relevant in the context of
developing digital music applications, such as automatic
composition systems and improvisation tools. This approach
not only strengthens the connection between music theory and
discrete mathematics but also opens opportunities for the
development of more advanced and adaptive music
technology. Through graph traversal simulation on Tonnetz,
coherent and harmonious chord progressions can be generated
efficiently, thereby supporting creativity and innovation in
music composition.

This paper discusses the modeling of Tonnetz as a planar
graph connecting major and minor chords based on harmonic
intervals, as well as the implementation of graph traversal
simulation to generate automatic chord progressions. This
research aims to model Tonnetz as a graph, implement graph
traversal simulations to generate automatic chord
progressions, and analyze the results both visually and
musically. The simulation results will be visually analyzed to
assess the harmonic relationships and coherence of the
generated chord progressions. Thus, this paper is expected to
contribute to the development of applicable mathematical
methods to support the automatic and systematic creation of
digital music.

mailto:alyanrrhmah@gmail.com
mailto:13524081@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

II. BASIC THEORY

A. Graph
1) Definition

A graph is a structure used to represent discrete
objects and the relationships between them. Formally, a
graph is defined as an ordered pair represented as 𝐺𝐺 =
(𝑉𝑉,𝐸𝐸), where V is a non-empty set of vertex (𝑣𝑣1 , 𝑣𝑣2 , … ,
𝑣𝑣n) and E is a set of edges (𝑒𝑒1 , 𝑒𝑒2 , … , 𝑒𝑒n) connecting
two vertex in V.

There are several variations of graph types based on
the presence of multiple edges and loop edges. If a graph
has no multiple edges or edges that return to the original
vertex (loop edges), it is called a simple graph. A graph
containing multiple edges is called a multi-graph, and a
graph with edges connecting a vertex to itself (loop edges)
is called a pseudograph.

Figure 1.1.1 Graph types based on multiple and loop edges (source :
[1])

Therefore, graphs can also be classified based on the

orientation of their edges. A graph that does not have a
direction on each edge is called an undirected graph, while
a graph that has a direction is called a directed graph or
digraph. In a directed graph, each edge is represented as an
ordered pair indicating the direction from one vertex to
another.

Figure 1.1.2 (G1) undirected graph (G2) directed graph (source : [1])

In addition, there are several special graphs below
a) Complete Graph : A graph in which each vertex is
directly connected to all other vertex. A complete graph
with vertex n is denoted as Kn, and has n(n – 1)/2
edges.
b) Cycle Graph : A simple graph in which each vertex
has degree two and forms a closed cycle.
c) Regular Graph : A graph in which every vertex has
the same degree. If the degree is r, and the number of
vertices is n, then the number of edges is nr/2.

d) Bipartite Graph : A graph whose vertices can be
divided into two sets V1 and V1 , such that each edge
connects only a vertex from V1 to a vertex in V1 . This
graph is denoted as 𝐺𝐺 = (𝑉𝑉1,V2) .

 Figure 1.1.3 Another special graph (source : [1])

2) Terminology

a) Adjacency : Two vertex are said to be adjacent if
they are directly connected by an edge.
b) Incidence: An edge is said to be incident to two
vertex if it connects those two vertices.
c) Isolated Vertex: A vertex that is not connected to
any other vertex or has no edges at all.
d) Null Graph or Empty Graph: A graph consisting of
a number of vertices but no edges.
e) Degree : The number of edges adjacent to a vertex.
In a directed graph, there is in-degree (number of
incoming edges) and out-degree (number of outgoing
edges).
f) Path : A sequence of vertices connected by edges in
order without repeating edges.
g) Cycle or Circuit : A closed path that starts and ends
at the same vertex without repeating any edges.
h) Connected : Two vertices are said to be connected if
there is a path between them. A graph is said to be
connected if all pairs of vertices are connected.
i) Subgraph and Complement Subgraph : A subgraph is
a part of a graph consisting of some of the vertices and
edges of the original graph. The complement subgraph
is a graph with the same set of vertices, but its edges
are the complement of the edges of the original graph.
j) Spanning Subgraph : A subgraph that contains all the
vertices of the original graph and is part of that graph.
k) Cut Set : A set of edges that, if removed, would
cause the graph to become disconnected.
l) Weighted Graph : A graph in which each edge has a
specific value or weight, representing a particular thing.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

3) Representation
a) Adjacency Matrix : A matrix that represents the
relationships between nodes. The value in row i and
column j is 1 if nodes i and j are connected. In a
directed graph, the direction is indicated by the location
of the value 1. If the graph is weighted, the value in
that position indicates the weight of the edge.

 Figure 1.3.1 Adjacency matrix (source : [2])

b) Incidency Matrix: A matrix that shows the
relationship between nodes and edges. The elements of
the matrix are 1 if the th node is connected to the the
edge, and 0 if not. For directed graphs, the values can
be -1 and 1 depending on the direction of the edge.

 Figure 1.3.2 Incidency matrix (source : [2])

c) Adjacency List : Each node is wrote along with a
list of its neighboring nodes. This representation is
efficient for sparse graphs.

 Figure 1.3.3 Adjacency list (source : [2])

B. Planar Graph
A planar graph is a graph that can be drawn on a flat

surface without any edges crossing each other. If a planar
graph is drawn in such a way that no edges cross each
other, then the resulting drawing is called a plane graph.
Planar graphs are often used in various practical
applications, such as electronic circuit design, where the
depiction of non-overlapping paths is essential to prevent
electrical interference.

Figure 2.1 (a) planar graph (b) and (c) plane graph (source : [2])

One of the fundamental concepts in planar graphs is

Euler's Formula, which states the following:
n−e+f=2

where:
• n: number of vertex,
• e: number of edges,
• f: number of regions (faces) including the outer
region.

This equation applies to simple connected planar graphs.
This Euler characteristic forms the basis for analyzing the
structure of planar graphs and can determining the
possibility of planarity of a graph based on the number of
vertex and edges.

In addition to the Euler equation, there is the Euler
inequality for simple planar graphs with e > 2, where:

 e ≤ 3n − 6
If a graph does not satisfy this inequality, then it is not
planar. Therefore, if it satisfies the inequality, it is not
necessarily planar, but it could be a candidate for a planar
graph.

The planarity of a graph can also be tested using
Kuratowski's theorem, which states that a graph G is planar
if and only if G does not have a subgraph that is
isomorphic or homeomorphic to one of the two classical
non-planar graphs, K3,3 and K5. These two graphs are
called Kuratowski graphs. This theorem is very useful for
proving that a graph is not planar by showing the existence
of a subgraph identical to a Kuratowski structure.

C. Chord Progression
Chord progression is a sequence of chord changes played

sequetially in a musical composition. This structure forms the
harmonic framework of a song and greatly influences the
mood, emotion, and musical direction of the piece. In music
theory, common chord progressions often follow certain
patterns such as I–IV–V–I or II–V–I, which are considered
harmonically stable and pleasing to the listener.

Each chord in the progression has a specific function; the
tonic as the center of stability, the dominant creating tension,
and the subdominant serving as a bridge between the two.
These functions form the foundation of tonal harmony theory.
Additionally, the selection and sequencing of chords can
convey specific nuances, ranging from cheerful to
melancholic, from tense to a calm resolution.

In the context of music technology and mathematics, chord
progressions can also be represented graphically, where each
chord becomes a node and the transitions between chords
become edges. This approach enables the application of graph
algorithms to explore, analyze, and even automatically
generate new chord progressions.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

D. Tonnetz
Tonnetz, is a geometric representation that illustrates the

harmonic relationships between tones in tonal music,
particularly those related to the major third (M3), minor third
(m3), and perfect fifth (P5) intervals. This concept was first
introduced by Leonhard Euler in the 18th century and later
further developed by modern music theorists within the
context of Neo-Riemannian theory.

In a two-dimensional Tonnetz representation, each node
represents a pitch class, and the edges connect notes with
strong harmonic relationships, such as forming a major or
minor triad. Thus, each triangle in the Tonnetz represents a
triad chord. When connected as a whole, the Tonnetz forms a
triangular lattice where movement between chords can be
visualized as transitions between nodes or paths on a planar
graph.

Figure 1.4 Tonnetz (source : [6])

The structure of the Tonnetz facilitates understanding of

the harmonic proximity between chords. For example, two
chords adjacent to each other in the Tonnetz have overlapping
notes (minimal voice leading), making them suitable for
creating chord progressions that sound natural and coherent.
Therefore, many music computing systems utilize this
structure to automatically generate or analyze chord
progressions.

III. IMPLEMENTATION

A. Representing Tonnetz as Planar Graph
The Tonnetz structure is represented as an undirected

graph, where the nodes represent pitch classes (notes such as
C, D, E, and so on), and the edges represent harmonic
relationships in the form of triads (groups of three notes).

To ensure that the graph formed is truly planar, the
representation is limited to a local subset of the Tonnetz,
consisting of several major and minor triads that are
harmonically related to each other. These triads partially
overlap, forming neatly arranged triangles that do not
intersect, as shown in the geometric Tonnetz grid.

Examples of triads selected in this representation include:
• C major: (C, E, G)
• A minor: (A, C, E)
• F major: (F, A, C)
• D minor: (D, F, A)

Each triad is formed as a triangle, and its vertices are

connected to form the sides between harmonically related

notes. The graph is then constructed using the networkx
library and visualized using matplotlib.

 Figure 3.1.1 Representing Tonnetz as Planar Graph using Python

B. Generating Harmonic Chord Progressions and
Classification Based On Song Genre
The main implementation process in this research is to

represent the Tonnetz structure as a planar graph, then utilize
this structure to generate automatic chord progressions tailored
to the characteristics of various music genres. The graph is
constructed using the Python networkx library, while the
probabilistic logic and chord transition processing are
performed through the ChordNode representation.

Each node in the graph represents a chord (in the form of
pitch class and quality such as major, minor, or diminished).
The edges between nodes reflect harmonic relationships based
on musical transformations such as parallel (P), relative (R),
leading-tone (L), as well as fifth (V) and fourth (IV)
movements.

Once the graph is formed, chord progressions are
generated by traversing from the initial chord to its adjacency.
The selection is not purely random but follows a weighted
random selection scheme considering the harmonic weight of
the edge, genre-specific weight, also enhancing genre
influence by squaring the genre. With this approach, the
resulting chord progression is not only musical but also
reflects the distinctive nuances of the selected genre.

 Figure 3.2.1 Class to represent a chord
The image above represents the basic structure of a chord

in this system. The chord object is created using the __init__()
constructor with the root parameter as the base note (e.g., C,

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

D#, or F#) and the quality parameter as the chord type (major,
minor, dim, or aug). The __str__() function is used to return a
string representation of the chord to be displayed to the user,
for example C for major, Am for minor, and F#° for
diminished. The implementation of the __hash__() and
__eq__() functions aims to enable chord objects to be used as
nodes in a networkx graph, while ensuring object equality
based on value rather than just identity.

Figure 3.2.2 Code of the TonnetzGraph constructor and the
_initialize_genre_weights() function

The __init__() constructor is used to initialize an empty
graph, define a 12-tone equal temperament scale, form
chord nodes with three types of qualities (major, minor,
diminished), and set transition weights between chords
based on genre through the _initialize_genre_weights()
function.

Figure 3.2.3 Code of the _build_tonnetz() function and the
_add_tonnetz_edges() function

The _build_tonnetz() function is responsible for
constructing all nodes in the Tonnetz graph and storing them
in the networkx graph structure. After all chord nodes have
been added, the _add_tonnetz_edges() function will be called
to form edges between nodes. The relationships between these
chords are based on the principles of Neo-Riemannian
harmonic transformation, such as P (Parallel), R (Relative), L
(Leading-tone), V (Dominant/Fifth), and IV
(Subdominant/Fourth).

 Figure 3.2.4 Helper function code in class TonnetzGraph

The code above displays helper functions such as
_get_relative_minor(), _get_leading_tone_major(),
_get_fifth(), and _get_fourth(). Each function is responsible
for calculating tone transformations according to specific
intervals used to construct the inner side of the graph. The
_parse_chord() function is responsible for converting user
input strings (e.g., Am, C#°) into ChordNode objects.

 Figure 3.2.5 Code of generate_progression() function

This function is used to generate automatic chord
progressions from the initial chord provided by the user. For
each step in the progression, the system will search for
neighbors of the current chord, then select the next chord
based on a combined weight calculation between basic
harmonic side weight (e.g., P or R transition); genre-specific

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

transition weight (e.g., jazz prefers minor and dim); and an
adjustment in the form of the square of the genre weight to
make the genre more dominant in the selection. Chord
selection is performed using a probabilistic approach through
the weighted random selection method. This enables the
system to generate chord progressions that remain consistent
with the characteristics of the selected genre.

 Figure 3.2.6 Code of classify_genre() function

The classify_genre() function is used to predict the genre

of music from a chord progression that has been formed. The
classification process is carried out by comparing each
transition between chords in the progression with the
transition weights of each genre. The final result of this
function is a dictionary containing match scores for each
genre, which indicates how close the progression is to the
harmonic characteristics of each genre.

Figure 3.2.7 Code of visualize_graph() function

The above function displays a visualization of the Tonnetz

graph in planar form using the matplotlib library. The chords
in the progression are visually marked with yellow (nodes)
and red lines (transition sides), while the other nodes are
distinguished based on chord type: light blue (major), pink
(minor), and light green (diminished).

Figure 3.2.8 Code of analyze_progression() function

The analyze_progression() function is used to display a
summary of the generated progression, including the type of
transition between chords (e.g., P, R, L), its harmonic weight,
and the genre classification results. This analysis helps users
understand the harmonic structure of the progression that has
been formed.

IV. TESTING

A. Testing Tonnetz as Planar Graph

 Figure 4.1.1 Checking if the tonnetz is planar graph

Based on the code created in the implementation section

and using is_planar function, the code was executed and the
following results were obtained that Tonnetz is a planar graph.

 Figure 4.1.2 Results of checking using Python

After forming the Tonnetz graph, the next testing step can
use Euler's formula by calculating the number of vertices (V),
the number of edges (E), and the number of regions (F)
bounded by the triad triangle.As a simple illustration:
Suppose the Tonnetz graph has:

• V =12 vertex (12 pitch classes)
• E = 30 edges (harmonic relations between pitches)

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

• F = 20 areas (triad triangles and outer regions)
Therefore, tested using Euler's characteristic:

V – E + F = 12 – 30 + 20 = 2

The calculation result satisfies Euler's characteristic for a
simple connected planar graph, as seen below:

V − E + F = 2

Thus, the Tonnetz graph structure constructed is a planar
graph.

To further validate the test, Euler's inequality for simple
planar graphs is also applied:

E≤3V−6 ⇒ 30≤3(12)−6 = 30

Since the inequality is satisfied, this graph is a valid candidate
as a planar graph.

Additionally, a test is performed using Kuratowski's
theorem. According to Kuratowski's theorem, a graph is not
planar if and only if it contains a subgraph isomorphic to:

• K5 : a complete graph with 5 vertex
• K3,3 : a complete bipartite graph with two parts, each

with 3 vertex
An examination of the local structure of the Tonnetz graph
revealed no configurations of vertices and edges forming
subgraphs isomorphic to those two graph. This can be visually
inspected from the representation of adjacent triangles, with
no vertices of degree 4 or higher being fully connected. Thus,
based on Kuratowski's Theorem, the constructed Tonnetz
graph is not a non-planar graph, reinforcing the conclusion
that Tonnetz can be represented as a planar graph.

B. Generating Harmonic Chord Progressions
On this testing phase, the main() function is used to run the

system interactively through the terminal interface. The
program first creates a TonnetzGraph object that represents
the planar graph of all chord combinations based on three
main qualities: major, minor, and diminished. The
initialization results show that the graph was successfully
formed with a total of 36 nodes (12 notes multiplied by 3
chord types) and 60 edges connecting the chords based on
harmonic transformations such as parallel (P), relative (R),
leading-tone (L), fifth (V), and fourth (IV).

 Figure 4.2.1 Main program to display the generated results

Once the graph is formed, the user is prompted to enter
input in the form of an initial chord, the desired progression
length, and the music genre to be used as a weighting
reference.

 Figure 4.2.2 Testing result

For example, when the user enters the initial chord E, a
progression length of 6, and selects the jazz genre, the system
generates the following progression sequence: E → C#m →
F#m → A → Am → C. This result reflects the characteristics
of jazz, which is known for its complex chord progressions
and tonal shifts that are not always linear. The transition from
major to minor chords, then to another minor chord, and
shifting to the major subdominant and parallel minor
demonstrates the effective application of the genre weighting
designed for jazz. After the progression is displayed, the
system also offers a graph visualization option. If selected, the
system will display a complete graph containing all chords as
nodes, with different colors for each type (major, minor,
diminished). The resulting progression path is then highlighted
in yellow for the nodes and with a thick red line for the
transitions, allowing users to directly observe how the chord
progression flows within the planar Tonnetz structure. This
visualization reinforces understanding of harmonic structure
and the effectiveness of traversal in generating progressions
based on the selected genre.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

V. CONCLUSION
This paper demonstrates that the Tonnetz structure can be

effectively represented as a planar graph consisting of major,
minor, and diminished chord nodes, as well as edges
representing harmonic relationships between chords. By
utilizing fundamental graph principles such as Neo-
Riemannian transformations (P, R, L, V, and IV) and planar
graph theory (Euler's formula and Kuratowski's theorem), the
Tonnetz structure was successfully tested and confirmed as a
valid simple planar graph.

The system implementation automatically generates chord
progressions based on user input such as the initial chord,
progression length, and chosen music genre. Chord selection is
performed using weighted random traversal, where weights are
determined based on harmonic proximity and genre
preferences. Testing results show that the system can generate
chord progressions that are not only musical and coherent but
also reflect the characteristics of the chosen genre, such as
complexity in jazz or balance in pop.

The graph visualization also successfully displays the
progression path interactively, making it easier for users to
understand the harmonic flow that occurs. Therefore, this
approach demonstrates that graph theory from discrete
mathematics can be practically utilized to support the
automatic, systematic, and adaptive generation of digital music
across different musical styles.

SOURCE CODE AT GITHUB
https://github.com/alyanrrhma/Makalah-Matdis.git

VIDEO LINK AT YOUTUBE
 https://bit.ly/ytbmakalahmatdis81

ACKNOWLEDGMENT
The author gratefully acknowledges the blessings and guidance
of Allah SWT, which provided the strength and guidance to
complete this paper titled "Tonnetz as a Planar Graph
Representation for Generating Harmonic Chord Progressions
in Songs.". Deep appreciation is also given to Bapak Dr.
Rinaldi Munir, M.T., the lecturer of the Discrete Mathematics
course for the Even Semester of 2024/2025, Class 01, whose
insights and teachings a crucial foundation for this work. As
the end, the author sincerely apologizes for any mistakes or
inaccuracies that may exist in this paper.

REFERENCES
[1] Munir, Rinaldi. 2024. "Graf (Bag. 1)".

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-
Graf-Bagian1-2024.pdf. Accessed 17 June 2025.

[2] Munir, Rinaldi. 2024. "Graf (Bag. 2)".
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-
Graf-Bagian1-2024.pdf. Accessed 17 June 2025.

[3] Munir, Rinaldi. 2024. "Graf (Bag. 3)".
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/22-
Graf-Bagian3-2024.pdf. Accessed 17 June 2025.

[4] D. Tymoczko, A Geometry of Music: Harmony and Counterpoint in the
Extended Common Practice. Oxford University Press, 2011.
https://global.oup.com/academic/product/a-geometry-of-music-
9780195336672. Accessed 19 June 2025.

[5] M. Hewitt, “Musical Chords, Sets, and Graph Theory,” Journal of
Mathematics and Music, vol. 3, no. 3, pp. 117–135, 2009.

[6] R. Parncutt, “A multi-level tonal interval space for modelling pitch
relatedness and musical consonance,” Journal of New Music Research,
vol. 35, no. 2, pp. 145–172, 2006.
https://www.researchgate.net/publication/303595116_A_multi-
level_tonal_interval_space_for_modelling_pitch_relatedness_and_music
al_consonance. Accessed 19 June 2025.

[7] M. Numer, A Link between Mathematics and Music: The Tonnetz,
Wooster College, 2025. https://wooster.edu/wp-
content/uploads/2025/04/Marissa-Numer-Poster.pdf. Accessed 19 June
2025.

PERSONAL STATEMENT
I hereby declare that the paper I have written is my own work,
not an adaptation or translation of someone else's paper, and
not plagiarism.

Bandung, 20 Juni 2025

Alya Nur Rahmah 13524081

https://github.com/alyanrrhma/Makalah-Matdis.git
https://bit.ly/ytbmakalahmatdis81
https://global.oup.com/academic/product/a-geometry-of-music-9780195336672
https://global.oup.com/academic/product/a-geometry-of-music-9780195336672
https://wooster.edu/wp-content/uploads/2025/04/Marissa-Numer-Poster.pdf
https://wooster.edu/wp-content/uploads/2025/04/Marissa-Numer-Poster.pdf

	I. Introduction
	II. Basic Theory
	A. Graph
	1) Definition
	a) Complete Graph : A graph in which each vertex is directly connected to all other vertex. A complete graph with vertex n is denoted as Kn, and has n(n – 1)/2 edges.
	b) Cycle Graph : A simple graph in which each vertex has degree two and forms a closed cycle.
	c) Regular Graph : A graph in which every vertex has the same degree. If the degree is r, and the number of vertices is n, then the number of edges is nr/2.
	d) Bipartite Graph : A graph whose vertices can be divided into two sets V1 and V1 , such that each edge connects only a vertex from V1 to a vertex in V1 . This graph is denoted as 𝐺 = (𝑉1,V2) .

	2) Terminology
	a) Adjacency : Two vertex are said to be adjacent if they are directly connected by an edge.
	b) Incidence: An edge is said to be incident to two vertex if it connects those two vertices.
	c) Isolated Vertex: A vertex that is not connected to any other vertex or has no edges at all.
	d) Null Graph or Empty Graph: A graph consisting of a number of vertices but no edges.
	e) Degree : The number of edges adjacent to a vertex. In a directed graph, there is in-degree (number of incoming edges) and out-degree (number of outgoing edges).
	f) Path : A sequence of vertices connected by edges in order without repeating edges.
	g) Cycle or Circuit : A closed path that starts and ends at the same vertex without repeating any edges.
	h) Connected : Two vertices are said to be connected if there is a path between them. A graph is said to be connected if all pairs of vertices are connected.
	i) Subgraph and Complement Subgraph : A subgraph is a part of a graph consisting of some of the vertices and edges of the original graph. The complement subgraph is a graph with the same set of vertices, but its edges are the complement of the edges o...
	j) Spanning Subgraph : A subgraph that contains all the vertices of the original graph and is part of that graph.
	k) Cut Set : A set of edges that, if removed, would cause the graph to become disconnected.
	l) Weighted Graph : A graph in which each edge has a specific value or weight, representing a particular thing.

	3) Representation
	a) Adjacency Matrix : A matrix that represents the relationships between nodes. The value in row i and column j is 1 if nodes i and j are connected. In a directed graph, the direction is indicated by the location of the value 1. If the graph is weight...
	b) Incidency Matrix: A matrix that shows the relationship between nodes and edges. The elements of the matrix are 1 if the th node is connected to the the edge, and 0 if not. For directed graphs, the values can be -1 and 1 depending on the direction o...
	c) Adjacency List : Each node is wrote along with a list of its neighboring nodes. This representation is efficient for sparse graphs.

	B. Planar Graph
	C. Chord Progression
	D. Tonnetz

	III. Implementation
	A. Representing Tonnetz as Planar Graph
	B. Generating Harmonic Chord Progressions and Classification Based On Song Genre

	IV. Testing
	A. Testing Tonnetz as Planar Graph
	B. Generating Harmonic Chord Progressions

	V. Conclusion
	Source Code at Github
	Video Link at Youtube

	Acknowledgment
	References

